On a Generic Verma Module at the Critical Level over Affine Lie Superalgebras

نویسنده

  • MARIA GORELIK
چکیده

We describe the structure of a Verma module with a generic highest weight at the critical level over a symmetrizable affine Lie superalgebra ĝ 6= A(2k, 2l). We obtain the character formula for a simple module with a generic highest weight at the critical level conjectured by V. G. Kac and D. A. Kazhdan.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proof of Kac-kazhdan Character Formula for Affine Lie Superalgebras

Kac and Kazhdan conjectured a character formula of a simple module with a generic highest weight at the critical level. We prove this formula for the affine Lie superalgebras with symmetrizable Cartan matrices.

متن کامل

On generalized reduced representations of restricted Lie superalgebras in prime characteristic

Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...

متن کامل

ar X iv : h ep - t h / 93 04 12 2 v 1 2 6 A pr 1 99 3 AS - ITP - 93 - 14 February 1 , 2008 Modules Over Affine Lie Superalgebras

Modules over affine Lie superalgebras G are studied, in particular, for G = ̂ OSP (1, 2). It is shown that on studying Verma modules, much of the results in Kac-Moody algebra can be generalized to the super case. Of most importance are the generalized Kac-Kazhdan formula and the Malikov-Feigin-Fuchs construction, which give the weights and the explicit form of the singular vectors in the Verma m...

متن کامل

coordinatized by quantum tori

We use a fermionic extension of the bosonic module to obtain a class of B(0, N)-graded Lie superalgebras with nontrivial central extensions. 0 Introduction B(M − 1, N)-graded Lie superalgebras were first investigated and classified up to central extension by Benkart-Elduque (see also Garcia-Neher’s work in [GN]). Those root graded Lie superalgebras are a super-analog of root graded Lie algebras...

متن کامل

Modules of the toroidal Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$

‎Highest weight modules of the double affine Lie algebra $widehat{widehat{mathfrak{sl}}}_{2}$ are studied under a‎ ‎new triangular decomposition‎. ‎Singular vectors of Verma modules are‎ ‎determined using a similar condition with horizontal affine Lie‎ ‎subalgebras‎, ‎and highest weight modules are described under the‎ ‎condition $c_1>0$ and $c_2=0$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007